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Potential function of elastic networ k model

In ENMSs, proteins are represented as elastic bodiesENM potentials are constructed
by using the ¢ coordinates of a protein in its native structure. A hammpotential with

a uniform force constar® accounts for pair-wise interactions between gla@®ms that
are within a cutoff distance.. The potential energy in the elastic network repredemt
of a protein is

E(x-%) == Y.C (d, - ), ®
2di(j’<RC

where X is a N-dimensional vector representing the Cartesian codedinaf theN Cy

atoms, X, is the corresponding vector of thg gositionsin the native (crystal or NMR)

structure,d; is the Euclidian distance between thg &omsi andj, and dj is the

corresponding distance in the native structure.

We can expand the above potential function to secoddrdry computing its Hessian
matrix H:

() :%&T H 2%, 2)

where &X = X — X,. Despite the drastic simplification of representing tomplex protein

structure by an effective harmonic potential, the resultnodel has led to useful
descriptions of large-amplitude protein motions in termewffrequency normal modes
of the Hessiali.

Fitting B factorsto calibrate force constant C
In its simplest form, the ENM has two parameters: ¢htoff distancdr: and the force

constantC of the harmonic springs. We calibra@ (in units ofkgT) by fitting the
isotropic crystallographiB factor B, of residue in a given crystal structure as follows:

B k Tcr al vmiz
ﬁ =< ui2 >isotropic: 2 3y$| Z /1 ) (3)



wherekg is Boltzmann constant;

m,i

is the 3D component of the eigenvector of mode

for residue, A, is the eigenvalue of mods, andTeys«al is the temperature at which the
structure was determined.

Mixed potential function constructed from two ENM s

Given two protein structure® and X, corresponding to the beginning and end states of a
conformational transition, respectively, we construeto t ENMs E,(X-X) and
E,(X-X,) with HessiansH, and H, according to Eq. (1) and Eq. (2). We then define
the MENM potential function:

E(X) = _ﬁ—lln[e—ﬁ(El(X—Xl)+sl) + e—ﬂ(Ez(X—Xz)+£2)]’ (4)
whereg;, &-are energy offsets aptk=1/k,T, is the inverse of the mixing temperatdie
that determines the extent of mixing between the BMMs. In the limitT ,, - +0, the
MENM potential E(%) is the minimummin{E, +¢,,E, +&,} of E, +&, andE, +&, ;
forT, — o, the mixed potential approaches the &(X) - E (X)+E,(X)+¢& +¢&,. For
small but finiter,,, E(X)is approximatelyE (X) + &, nearX andE,(X) + & nearX,, with

a smooth interpolation betwedfand E, elsewhere in configuration space. The MENM
energy surfacg(X) has two dominant local minima corresponding tolibginning and

end structures of the transition, and connects théma saddle point whose height can
be tuned by the mixing temperatgre. E(X) thus seems well suited to explore the

transition between two protein conformations tlegiresent different functional states. Eq.
(4) can be easily generalized to mixing of morenthao ENMs. Here, with the
statistical-mechanical mixing of two free energyfaces, we can take advantage of the
largely-retained Gaussian character of the MENMmha@nd find analytical expressions
for free energies, PMFs, saddle points, and tiansgiaths. In particular, the partition
function of the MENM system at temperatre300 K is given by

7 = Ie—ﬁTE(X)dy( _ I[e—ﬁ(El(X—xl)m) + e‘ﬁ(Ez(X_Xz)*'fz)]NT dx, 5)
where
1 Br
= N, =2 6
Br PR (6)

are the inverse sampling temperature, and the oanaixing and sampling temperatures,
respectively. In general; # Hecause the mixing temperature can be much higher
thanT=300 K to achieve a reasonably low energy barsee Results). Nevertheless, for
integer temperature ratids; this partition function can be computed analytycélom
Gaussian integrals obtained after a binomial expans

Parameterization of MENM

The MENM potential has two parameters, (mixing temperature) angy—¢; (difference
in energy offsets). Firsk,—¢; is determined by the relative populations of the end



states at equilibrium, as measured by experim@¥ithin the harmonic approximation to
the partition functions of the two states, theorati populations in states 1 and 2 is given
by

R/P, =/ %) [detH,)/detH,)]"?. 7

For simplicity or without population information @aNable experimentally, we set=¢;.

Secondly, a bound ol can in principle be determined from the experirakrdate of
transitions as follows:

_46 _Es
rate= e ' <lpstxe ke’ (8)
Here the pre-factay, is assumed to have an upper bound of L gl the free energy
barrier AG is approximated by (the potential energy at the SP). Clearly, Eq.ig4

very coarse approximation, with the implicit asstimpthat large-amplitude equilibrium
fluctuations obey a simple dynamics and are raézdiby described by the combined
energy surface. One can thus expect only a rosiginage of the barrier height.

For convenience and efficiency of running PATH-ENWE only consider the extreme
case of weak mixingTg, =T) with €,=¢;.

Saddle points and minima of mixed energy surface

We can locate the energy minima and saddle poBE for the MENM system by
setting the gradient of the mixed potential funetio zero. From Eq. (4), we have
DE(X) = £,(X) IE (X~ %) + f,(X) [DE, (X~ %,) =0, )
where

e AE(—R)+e)

f,(%) = e PEG)*E) 4 o AE(R)re,) | (10)

f,(X) =1- f,(X).

With OE (X-X)=H,(X-X) andUE,(X-X,) =H,(X-X, ), we find that the SP (and
minima) can be expressed as

X =[fi(Ro)Hy + (1= LM [ LR HR + A= (%G )H,,] (11)
where the matrix inverse is restricted to the qudes spanned by the eigenvectors with
non-zero eigenvalues. By combining Eqgs. (10) add, (e find that the SP can be found
by solving a one-dimensional “fixed-point” equatifon f;

f(Xg (f) = 1. (12)

Eq. (12) can be solved efficiently (for example, using 1D bisection) without a full-
scale minimization of the gradient in the high-disenal conformation space. Its

solutions include all SPs and local minima of tléeptial, among which the unstable
fixed point(s) of Eqg. (12) can be identified as SPs

The above 1D reduction of the multi-dimensional &fation can be generalized to a
general mixing potential

E(X) = 9(E,(X=%) +& ,E,(X—X,) +&,) (13)



In general, the stationary point is given by

E(R) =220, (x - %) + 22 0E, (%~ %,)

(o] =N OE, (14)
= H(X) ME (X =%) + f,(X) [E, (X~ X,) =0
where
99
f,(X) = —0E1
0= 5555 5
OE, OE,
f,(X) =1- f,(X).

If;_lggaaEgm, thenf, 0 [01]; so the 1D SP path,(f,) solved from Eq. (11) is
1 2

independent of the mathematical form of the miXungctiong(E,, E, ). In particular, the

MENM mixing potential (Eq. (4)) satisfiegaEg EI;EQ > 0and so the SPs should fall along

1 2
the same 1D SP path disregarding the choice ohgisthemes.

For the parameters we choose here, there is ordySkh However, at higher mixing
temperatures, a situation can arise with three manconnected by two SPs. We note
that the above formalism can be generalized tongixif more than two ENMs: for the
mixed potential fromK ENMSs, one needs to solve ka1l dimensional “fixed-point”
eguation.

1D and 2D potential of mean force

We define the following reaction coordina{&) for a given directioni :

r(x) = (x-%) . (16)
So
r(%)=0, 17

r(%,) = (% =%,) (A = Dy,.

The potential of mean force (PMF) at temperafliie computed as the free energy for
the subspace constrainedrify) =r :
1
F(r)=-—-log(z(n), (18)
B
where
Z(r) = [ 5(r (x) - r Jax

19
- I[e—ﬂ(El(X—xl)m) + e_ﬁ(Ez(X_Xz)*'fz)]NT J(r (%) - r)dx. (19)



The average conformation at givenr is:

% 1 ~BER 3 5(r (% %

X) =——|e XO(r(X)—r )dx 20
®), =20/ (r(%)-r) (20)
We further compute the 2D PMF by using two samptirgctions,n, =n,,,n, = X, = X,
that define two reaction coordinateandr’, respectively:

F=ry =(X=X) Og /(X = %) Mg ], r'=r, = (X=X) 0, /[(X, - %) ). (21)
The 2D PMF is then
1

F(r,r')=—-—log(Z(r,r' 22

(r.r) ﬂrog( (r.r) (22)
Z(r,r') = j e EO5(r (%) - r) (' (%) - r)dx

23

= I[e—ﬁ(El(X—x1)+sl) + e—ﬁ(Ez(x—x2)+sz)]NT J(r()?)— ) B5(r'(>?)— r')dx (23)
Similarly, the average conformation at given {Jrisr

| BER) g sy () — () )
(%), .= Z(r,r')Ie x3(r (x) - r)o(r(x) - r)dx (24)

For integerNt Egs. (16 and (19 can be computed analytically from Gaussian integra
obtained after a binomial expansion (see Appendix).

Transtion paths

Once the SP is found, one can start from the Sfate the steepest-descent (SD) path
that connects the two minima. The two brancheshefsteepest-descent path satisfy

x = —0E(X)/|JE(X)| with initial valuesx, (0) =X, &, wheren,is the direction of the

eigenvector of the local Hessian with negative migdue, and -~ 0. The SP path is
divided into frames at intervals of ~0.1 A of RMSD.

Eqg. (11) provides a simpler definition of a traisit path. If we use the Boltzmann
weightf; as a parameter within [0, I} (f)traces a path that connects the minima and
saddle points af is varied from 1 to 0. Here, we use 100 stepstatvals ofd; =0.01.
Interestingly, the resulting “SP path” is indepemidef the mixing temperatur€,, and

€,—€1, which means that the path contains the minimasaddles regardless of the choice
of MENM parameters. Furthermore, it is essentiallyariant to the choice of mixing

potential E(X) = g(E,(X—-X,)+¢&,,E,(X-%X,)+&,) . The SP path is particularly
appealing for energetically driven transitions heseait is the trace of the SP&as;, the

thermodynamic driving force, is varied frofio to —co. In addition, we also use the
PMF along directionsi, andn, in configuration space to define a transitionestand a

“PMF transition path”. For that, we analyticallympute the two-dimensional potential
of mean force (PMF) along directiong, and X, -% in conformation space. The
direction fi, corresponds to the unstable mode at the saddlg pouha 1D-projection on

this direction gives to a good approximation thghlest PMF barrierg, is the vector
connecting the initial and final structure. The mmal free-energy path (PMF path) is



then defined agx) . o (Eq. (24)), where . (r xorresponds to the minimum of PNIF(

r) for givenr. To a good approximation, the “optimal directiafy,, defined as the
eigenvector of the unstable mode at the SP, isxdiyehe gradient d&; or E; at the SP.



