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Potential function of elastic network model 
 
In ENMs, proteins are represented as elastic bodies. The ENM potentials are constructed 
by using the Cα coordinates of a protein in its native structure. A harmonic potential with 
a uniform force constant C accounts for pair-wise interactions between all Cα atoms that 
are within a cutoff distance RC. The potential energy in the elastic network representation 
of a protein is 
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where x
r

 is a 3N-dimensional vector representing the Cartesian coordinates of the N Cα 
atoms, 0x

r
 is the corresponding vector of the Cα positions in the native (crystal or NMR) 

structure, ijd  is the Euclidian distance between the Cα atoms i and j, and 0
ijd  is the 

corresponding distance in the native structure.  
 
We can expand the above potential function to second order by computing its Hessian 
matrix H: 
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where 0xxx
rrr −=δ . Despite the drastic simplification of representing the complex protein 

structure by an effective harmonic potential, the resulting model has led to useful 
descriptions of large-amplitude protein motions in terms of low-frequency normal modes 
of the Hessian H. 
 
Fitting B factors to calibrate force constant C 
 
In its simplest form, the ENM has two parameters: the cutoff distance RC and the force 
constant C of the harmonic springs.  We calibrate C (in units of kBT) by fitting the 
isotropic crystallographic B factor iB  of residue i in a given crystal structure as follows: 
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where kB is Boltzmann constant, imv ,

r
 is the 3D component of the eigenvector of mode m 

for residue i, mλ  is the eigenvalue of mode m, and Tcrystal is the temperature at which the 

structure was determined. 
 
Mixed potential function constructed from two ENMs 
 
Given two protein structures 1x

r
 and 2x

r
corresponding to the beginning and end states of a 

conformational transition, respectively, we construct two ENMs )( 11 xxE
rr −  and 

)( 22 xxE
rr −  with Hessians 1H  and 2H  according to Eq. (1) and Eq. (2).  We then define 

the MENM potential function: 
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where ε1, ε2 are energy offsets and mBTk/1=β  is the inverse of the mixing temperature Tm 

that determines the extent of mixing between the two ENMs. In the limit 0+→T m , the 

MENM potential )(xE
r

 is the minimum { }2211 ,min εε ++ EE  of 11 ε+E  and 22 ε+E ; 

for ∞→T m , the mixed potential approaches the sum 2121 )()()( εε +++→ xExExE
rrr

. For 

small but finiteT m , )(xE
r

is approximately 11 )( ε+xE
r

 near 1x
r

and 12 )( ε+xE
r

 near 2x
r

, with 

a smooth interpolation between 1E and 2E  elsewhere in configuration space. The MENM 
energy surface )(xE

r
 has two dominant local minima corresponding to the beginning and 

end structures of the transition, and connects them with a saddle point whose height can 
be tuned by the mixing temperatureT m . )(xE

r
 thus seems well suited to explore the 

transition between two protein conformations that represent different functional states. Eq. 
(4) can be easily generalized to mixing of more than two ENMs. Here, with the 
statistical-mechanical mixing of two free energy surfaces, we can take advantage of the 
largely-retained Gaussian character of the MENM theory and find analytical expressions 
for free energies, PMFs, saddle points, and transition paths.  In particular, the partition 
function of the MENM system at temperature T=300 K is given by 
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are the inverse sampling temperature, and the ratio of mixing and sampling temperatures, 
respectively.  In general, 1≠TN  because the mixing temperature can be much higher 
than T=300 K to achieve a reasonably low energy barrier (see Results).  Nevertheless, for 
integer temperature ratios TN  this partition function can be computed analytically from 
Gaussian integrals obtained after a binomial expansion. 
 
Parameterization of MENM 
 
The MENM potential has two parameters: Tm (mixing temperature) and ε2−ε1 (difference 
in energy offsets).  First, ε2−ε1 is determined by the relative populations of the two end 
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states at equilibrium, as measured by experiments. Within the harmonic approximation to 
the partition functions of the two states, the ratio of populations in states 1 and 2 is given 
by 
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For simplicity or without population information available experimentally, we set ε2=ε1.  
 
Secondly, a bound on Tm can in principle be determined from the experimental rate of 
transitions as follows: 
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Here the pre-factor0ω  is assumed to have an upper bound of 1 ps-1 and the free energy 

barrier ∆G is approximated by spE (the potential energy at the SP). Clearly, Eq. (4) is a 

very coarse approximation, with the implicit assumption that large-amplitude equilibrium 
fluctuations obey a simple dynamics and are realistically described by the combined 
energy surface.  One can thus expect only a rough estimate of the barrier height.  
 
For convenience and efficiency of running PATH-ENM, we only consider the extreme 
case of weak mixing (Tm =T) with ε2=ε1.   
 
Saddle points and minima of mixed energy surface 
 
We can locate the energy minima and saddle points (SP) for the MENM system by 
setting the gradient of the mixed potential function to zero. From Eq. (4), we have 
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With )()( 1111 xxHxxE
rrrr −=−∇  and )()( 2222 xxHxxE

rrrr −=−∇ , we find that the SP (and 
minima) can be expressed as 
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where the matrix inverse is restricted to the sub-space spanned by the eigenvectors with 
non-zero eigenvalues. By combining Eqs. (10) and (11), we find that the SP can be found 
by solving a one-dimensional “fixed-point” equation for f1 
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Eq. (12) can be solved efficiently (for example, by using 1D bisection) without a full-
scale minimization of the gradient in the high-dimensional conformation space. Its 
solutions include all SPs and local minima of the potential, among which the unstable 
fixed point(s) of Eq. (12) can be identified as SPs.  
 
The above 1D reduction of the multi-dimensional SP equation can be generalized to a 
general mixing potential  
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In general, the stationary point is given by 
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where 
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r
 solved from Eq. (11) is 

independent of the mathematical form of the mixing function ),( 21 EEg . In particular, the 

MENM mixing potential (Eq. (4)) satisfies 0
21
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and so the SPs should fall along 

the same 1D SP path disregarding the choice of mixing schemes. 
 
For the parameters we choose here, there is only one SP. However, at higher mixing 
temperatures, a situation can arise with three minima connected by two SPs.  We note 
that the above formalism can be generalized to mixing of more than two ENMs: for the 
mixed potential from K ENMs, one needs to solve a K-1 dimensional “fixed-point” 
equation. 
 
1D and 2D potential of mean force  
 
We define the following reaction coordinate)(xr

r
for a given directionn

r
: 
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The potential of mean force (PMF) at temperature T is computed as the free energy for 
the subspace constrained by rxr =)(

r
: 
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The average conformation at given r is: 
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We further compute the 2D PMF by using two sampling directions, 1221  , xxnnn sp

rrrrr
−== , 

that define two reaction coordinates r and r', respectively: 
].)/[()('  ],)/[()( 2122112121 nxxnxxrrnxxnxxrr spspsp

rrrrrrrrrrrr
⋅−⋅−==⋅−⋅−==   (21) 

The 2D PMF is then 

( ))',(log
1

)',( rrZrrF
Tβ

−=         (22) 

( ) ( )
[ ] ( ) ( )∫

∫
−⋅−+=

−⋅−=
+−−+−−

−

xdrxrrxree

xdrxrrxrerrZ

T

T

NxxExxE

xE

rrr

rrr

rrrr

r

)''()(

)''()()',(

))(())((

)(

222111 δδ

δδ
εβεβ

β

   (23) 

Similarly, the average conformation at given (r, r') is 
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For integer NT, Eqs. (16) and (19) can be computed analytically from Gaussian integrals 
obtained after a binomial expansion (see Appendix). 
 
Transition paths 
 
Once the SP is found, one can start from the SP to trace the steepest-descent (SD) path 34 
that connects the two minima.  The two branches of the steepest-descent path satisfy 

|)(|/)( xExEx
rr&r ∇−∇=  with initial values dn)0(

rrr ε±=± spxx where dn
r

is the direction of the 

eigenvector of the local Hessian with negative eigenvalue, and 0→ε . The SP path is 
divided into frames at intervals of ~0.1 Å of RMSD. 
 
Eq. (11) provides a simpler definition of a transition path. If we use the Boltzmann 
weight f1 as a parameter within [0, 1], )( 1fx sp

r
traces a path that connects the minima and 

saddle points as f1 is varied from 1 to 0.  Here, we use 100 steps at intervals of δf1 =0.01. 
Interestingly, the resulting “SP path” is independent of the mixing temperature Tm and 
ε2−ε1, which means that the path contains the minima and saddles regardless of the choice 
of MENM parameters. Furthermore, it is essentially invariant to the choice of mixing 
potential ))(,)(()( 222111 εε +−+−= xxExxEgxE

rrrrr
. The SP path is particularly 

appealing for energetically driven transitions because it is the trace of the SP as ε2-ε1, the 
thermodynamic driving force, is varied from ∞+  to ∞− .  In addition, we also use the 
PMF along directions 1n

r
 and 2n

r
 in configuration space to define a transition state and a 

“PMF transition path”. For that, we analytically compute the two-dimensional potential 
of mean force (PMF) along directions spn

r
 and 12 xx

rr −  in conformation space.  The 

direction spn
r

corresponds to the unstable mode at the saddle point, and a 1D-projection on 

this direction gives to a good approximation the highest PMF barrier; 2n
r

is the vector 
connecting the initial and final structure. The minimal free-energy path (PMF path) is 
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then defined as 
)(, '

min rrr
x
r

 (Eq. (24)), where )('
min rr  corresponds to the minimum of PMF(r, 

r') for given r.  To a good approximation, the “optimal direction” spn
r

, defined as the 

eigenvector of the unstable mode at the SP, is given by the gradient of E1 or E2 at the SP. 
 


